A role for chromatin topology in imprinted domain regulation.
نویسندگان
چکیده
Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.
منابع مشابه
Comparative phylogenetic analysis of blcap/nnat reveals eutherian-specific imprinted gene.
Imprinted genes are parent-of-origin dependent, monoallelically expressed genes present in marsupials and eutherian mammals. Altered expression of imprinted genes plays a significant role in the etiology of a variety of human disorders and diseases. Nevertheless, the regulatory mechanisms of imprinting remain poorly defined. The imprinted gene Neuronatin (Nnat) is an excellent candidate for stu...
متن کاملO-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملRoles of Chromatin insulators in gene regulation and diseases
With advances in genetic science, the dynamic structure of eukaryotic genome is considered as basis of gene expression regulation. Long-distance communication between regulatory elements and target promoters is critical and the mechanisms responsible for this connection are just starting to emerge. Chromatin insulators are key determinants of proper gene regulation and precise organization of c...
متن کاملMore than insulator: multiple roles of CTCF at the H19-Igf2 imprinted domain
CTCF (CCCTC-binding factor)-mediated insulation at the H19-Insulin-like growth factor 2 (Igf2) imprinted domain is a classic example for imprinted gene regulation. DNA methylation difference in the imprinting control region (ICR) is inherited from the gametes and subsequently determines parental allele-specific enhancer blocking and imprinted expression in the soma. Recent genetic studies showe...
متن کاملLong noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing.
Establishment of silencing by noncoding RNAs (ncRNAs) via targeting of chromatin remodelers is relatively well investigated; however, their role in the maintenance of silencing is poorly understood. Here, we explored the functional role of the long ncRNA Kcnq1ot1 in the maintenance of transcriptional gene silencing in the one mega-base Kcnq1 imprinted domain in a transgenic mouse model. By cond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry and cell biology = Biochimie et biologie cellulaire
دوره 94 1 شماره
صفحات -
تاریخ انتشار 2016